
                
  DR. HAX
COLUMN

If you have an application thats copy

protected, or which has a registration or expiration
scheme, its probably easier to fix than you think.    All
you need is some knowledge of Macintosh

programming, a debugger such as MacsBug 6.1, and
the willingness to roll up your sleeves and see what
you can do. Before you start working on an

application, be sure to make a copy of it.    Well be

making some low-level changes to the code, and its
easy to permanently damage something.First lets

examine how an application detects that it has

expired.    Normally theres a piece of code that goes
something like this:

                                move the current time
into a memory address
             

 move the expiration date
into another address               

compare the two addresses
if the time is greater, quit - else continue.
For

registration, it might go something like this:

                get
the serial number from the user               

perform some
arithmetic operations on the serial number

move the result into an address                           

check if the
result is zero                 

if it isnt, quit - else record the

registration.
Heres an example for copy protection:

change the floppy disk motor speed

                  get the

contents of disk sector XXX                     

perform some hefty
arithmetic on the contents             

move the result into an
address                               

check if the result is 312                   

if it
isnt, quit - else continue.

You'll probably notice that all
three of these examples have something in common -
no matter how complicated the initial scheme, they
all compare numbers to see if the desired conditions
are met.    If we concentrate on changing the

comparison code, we can break any of these

schemes.Well use MacsBug to discover where the

code actually is.    The first thing you need is a

reference point: pick a Macintosh toolbox call that

occurs right after the checking code has failed.    For
example, if the program beeps if it has expired, you
can use Sysbeep.    If it puts up an alert box, you can
use Alert (or perhaps StopAlert).    Use MacsBugs

"ATB" command to drop into the debugger when this
toolbox call occurs.    For example, "ATB sysbeep" will
stop the computer right before it beeps.    Then you
can dissassemble the code (working backwards) to
discover an assembly command that compares the
numbers - such as "TST.L" or "CMP.B".    The "IP"

command is useful for this; you may have to play

with MacsBug for a few hours to see what each

assembly language instruction does (dont worry if

you dont know much about assembly; I learned

everything I know from watching MacsBug steps

through instructions).When you find the specific set
of instructions, there are two possibilities:    the first is
that the program branches to the bad code and

executes the good code if it doesnt branch.   

This

might look something like this (some MacsBug junk
removed for clarity):

+016C            TST.L                D1  |

4A81+016E                            BEQ.S                *+$000E  |

670C+0170  *** GOOD CODE HERE***

+017C      BRA.S              *+$002C  |

602A+017E  *** BAD CODE HERE! ***

This is the easiest type of code to fix.    All we need to
do is replace the "TST.L" and "BEQ.S" instructions with
something that will just drop through to the next

instruction at +0170.    The perfect thing to replace it
with is two "NOP" instructions ("4E71" in machine

language), which does nothing at all except go to the
next instruction.    See the machine code on the right
(4A81, 670C, etc.)?    If you open up a code resource in
ResEdit, thats what the numbers are.    Simply write
down a few of them around the instruction you need
to change, perhaps: "4A81 670C 4EBA FCB8 2200"

(you get the extra numbers from further on in

MacsBug).    Be sure to write down quite a few of them

and not just a couple, because theres likely to be a lot
of values that are the same in any file, and you might
change the wrong one by mistake.    Search each and
every code resource that you find in ResEdit for the
string "4A81670C4EBAFCB82200" (there are no

spaces in
ResEdit).    In this case, when you find it,

youll change the characters "4A81670C" to

"4E714E71".    Provided you changed it in the correct
place, the program can now never branch to the bad
code.The other possibility is that the branch

instruction goes to the good code, so you need to

make the program branch every time:

+016C

TST.L                D1  |

4A81+016E                            BEQ.S                *+$000E  |

670C+0170  *** BAD CODE HERE! ***

+017C    BRA.S              *+$002C  |

602A+017E  *** GOOD CODE HERE ***

In this case, you need to replace the "TST.L" and

"BEQ.S"instructions with code that makes the program
branch every time.    The first instruction should be
"6000" (BRA), and the second should be the distance
to branch.    You can get this from the original

instruction in this line: the "BEQ.S *+$000E". The

"000E" is what you want.    So, using ResEdit, change
the "4A81670C" to "6000000E".    Once again, be sure
to use a few extra characters when you search.So

thats the essence of simple code cracking.    As you get
better at it, youll be able to fix things that are a little
tougher than the examples shown here.    Just

remember that it doesnt have to be complicated - you
dont have to break someones complicated encryption
scheme, you just have to use a little knowledge of

how your computer works to find the weak spot.

